
Package: rjd3filters (via r-universe)
October 16, 2024

Type Package

Title Trend-Cycle Extraction with Linear Filters based on JDemetra+
v3.x

Version 2.1.1.9000

Description This package provides functions to build and apply
symmetric and asymmetric moving averages (= linear filters) for
trend-cycle extraction. In particular, it implements several
modern approaches for real-time estimates from the viewpoint of
revisions and time delay in detecting turning points. It
includes the local polynomial approach of Proietti and Luati
(2008), the Reproducing Kernel Hilbert Space (RKHS) of Dagum
and Bianconcini (2008) and the Fidelity-Smoothness-Timeliness
approach of Grun-Rehomme, Guggemos, and Ladiray (2018). It is
based on Java libraries developped in 'JDemetra+'
(<https://github.com/jdemetra>), time series analysis software.

Depends R (>= 4.1.0)

Imports rJava (>= 1.0-6), methods, MASS, graphics, stats, rjd3toolkit
(> 3.2.4)

Remotes github::rjdverse/rjd3toolkit

SystemRequirements Java (>= 17)

License file LICENSE

LazyData TRUE

URL https://github.com/rjdverse/rjd3filters,

https://rjdverse.github.io/rjd3filters/

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Encoding UTF-8

Repository https://aqlt.r-universe.dev

1

https://github.com/jdemetra
https://github.com/rjdverse/rjd3filters
https://rjdverse.github.io/rjd3filters/

2 confint_filter

RemoteUrl https://github.com/rjdverse/rjd3filters

RemoteRef HEAD

RemoteSha ab8eb432073027c0851a9d2f0fa614378bac5c89

Contents
confint_filter . 2
deprecated-rjd3filters . 4
dfa_filter . 4
diagnostics-fit . 5
diagnostic_matrix . 7
filter . 8
filters_operations . 9
finite_filters . 12
fst . 13
fst_filter . 14
get_kernel . 16
get_moving_average . 16
get_properties_function . 17
implicit_forecast . 17
impute_last_obs . 18
localpolynomials . 19
lp_filter . 21
mmsre_filter . 22
moving_average . 24
mse . 26
plot_filters . 27
polynomial_matrix . 30
retailsa . 31
rkhs_filter . 31
rkhs_kernel . 32
rkhs_optimal_bw . 33
rkhs_optimization_fun . 34
simple_ma . 35
var_estimator . 35

Index 37

confint_filter Confidence intervals

Description

Confidence intervals

confint_filter 3

Usage

confint_filter(x, coef, coef_var = coef, level = 0.95, ...)

Arguments

x input time series.

coef moving-average (moving_average()) or finite filter (finite_filters()) used
to filter the series.

coef_var moving-average (moving_average()) or finite filter (finite_filters()) used
compute the variance (throw var_estimator()). By default equal to coef.

level confidence level.

... other arguments passed to the function moving_average() to convert coef to a
"moving_average" object.

Details

Let (θi)−p≤i≤q be a moving average of length p+ q + 1 used to filter a time series (yi)1≤i≤n. Let
denote µ̂t the filtered series computed at time t as:

µ̂t =

q∑
i=−p

θiyt+i.

If µ̂t is unbiased, a approximate confidence for the true mean is:µ̂t − z1−α/2σ̂

√√√√ q∑
i=−p

θ2i ; µ̂t + z1−α/2σ̂

√√√√ q∑
i=−p

θ2i

 ,

where z1−α/2 is the quantile 1− α/2 of the standard normal distribution.

The estimate of the variance σ̂ is obtained using var_estimator() with the parameter coef_var.
The assumption that µ̂t is unbiased is rarely exactly true, so variance estimates and confidence
intervals are usually computed at small bandwidths where bias is small.

When coef (or coef_var) is a finite filter, the last points of the confidence interval are computed
using the corresponding asymmetric filters

References

Loader, Clive. 1999. Local regression and likelihood. New York: Springer-Verlag.

Examples

x <- retailsa$DrinkingPlaces
coef <- lp_filter(6)
confint <- confint_filter(x, coef)
plot(confint, plot.type = "single",

col = c("red", "black", "black"),
lty = c(1, 2, 2))

4 dfa_filter

deprecated-rjd3filters

Deprecated function

Description

Deprecated function

Usage

cross_validation(x, coef, ...)

Arguments

x input time series.

coef vector of coefficients or a moving-average (moving_average()).

... other arguments passed to the function moving_average() to convert coef to a
"moving_average" object.

dfa_filter Direct Filter Approach

Description

Direct Filter Approach

Usage

dfa_filter(
horizon = 6,
degree = 0,
density = c("uniform", "rw"),
targetfilter = lp_filter(horizon = horizon)@sfilter,
passband = 2 * pi/12,
accuracy.weight = 1/3,
smoothness.weight = 1/3,
timeliness.weight = 1/3

)

diagnostics-fit 5

Arguments

horizon horizon (bandwidth) of the symmetric filter.

degree degree of polynomial.

density hypothesis on the spectral density: "uniform" (= white woise, the default) or
"rw" (= random walk).

targetfilter the weights of the symmetric target filters (by default the Henderson filter).

passband passband threshold.
accuracy.weight, smoothness.weight, timeliness.weight

the weight used for the optimisation. The weight associated to the residual is
derived so that the sum of the four weights are equal to 1.

Details

Moving average computed by a minimisation of a weighted mean of three criteria under polyno-
mials constraints. The criteria come from the decomposition of the mean squared error between th
trend-cycle

Let θ = (θ−p, . . . , θf)
′ be a moving average where p and f are two integers defined by the param-

eter lags and leads. The three criteria are:

Examples

dfa_filter(horizon = 6, degree = 0)
dfa_filter(horizon = 6, degree = 2)

diagnostics-fit Diagnostics and goodness of fit of filtered series

Description

Set of functions to compute diagnostics and goodness of fit of filtered series: cross validation (cv())
and cross validate estimate (cve()), leave-one-out cross validation estimate (loocve), CP statistic
(cp()) and Rice’s T statistics (rt()).

Usage

cve(x, coef, ...)

cv(x, coef, ...)

loocve(x, coef, ...)

rt(x, coef, ...)

cp(x, coef, var, ...)

6 diagnostics-fit

Arguments

x input time series.

coef vector of coefficients or a moving-average (moving_average()).

... other arguments passed to the function moving_average() to convert coef to a
"moving_average" object.

var variance used to compute the CP statistic (cp()).

Details

Let (θi)−p≤i≤q be a moving average of length p+ q + 1 used to filter a time series (yi)1≤i≤n. Let
denote µ̂t the filtered series computed at time t as:

µ̂t =

q∑
i=−p

θiyt+i.

The cross validation estimate (cve()) is defined as the time series Yt − µ̂−t where µ̂−t is the leave-
one-out cross validation estimate (loocve()) defined as the filtered series computed deleting the
observation t and remaining all the other points. The cross validation statistics (cv()) is defined as:

CV =
1

n− (p+ q)

n−q∑
t=p+1

(yt − µ̂−t)
2
.

In the case of filtering with a moving average, we can show that:

µ̂−t =
µ̂t − θ0yt
1− θ0

and

CV =
1

n− (p+ q)

n−q∑
t=p+1

(
yt − µ̂t

1− θ0

)2

.

In the case of filtering with a moving average, the CP estimate of risk (introduced by Mallows
(1973); cp()) can be defined as:

CP =
1

σ2

n−q∑
t=p+1

(yt − µ̂t)
2 − (n− (p+ q))(1− 2θ0).

The CP method requires an estimate of σ2 (var parameter). The usual use of CP is to compare
several different fits (for example different bandwidths): one should use the same estimate of σ̂2

for all fits (using for example var_estimator()). The recommendation of Cleveland and Devlin
(1988) is to compute σ̂2 from a fit at the smallest bandwidth under consideration, at which one
should be willing to assume that bias is negligible.

The Rice’s T statistic (rt()) is defined as:

1

n− (p+ q)

n−q∑
t=p+1

(yt − µ̂t)
2

1− 2θ0

diagnostic_matrix 7

References

Loader, Clive. 1999. Local regression and likelihood. New York: Springer-Verlag.

Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661– 675.

Cleveland, W. S. and S. J. Devlin (1988). Locally weighted regression: An approach to regression
analysis by local fitting. Journal of the American Statistical Association 83, 596–610.

diagnostic_matrix Compute quality criteria for asymmetric filters

Description

Function du compute a diagnostic matrix of quality criteria for asymmetric filters

Usage

diagnostic_matrix(x, lags, passband = pi/6, sweights, ...)

Arguments

x Weights of the asymmetric filter (from -lags to m).

lags Lags of the filter (should be positive).

passband passband threshold.

sweights Weights of the symmetric filter (from 0 to lags or -lags to lags). If missing, the
criteria from the functions mse are not computed.

... optional arguments to mse.

Details

For a moving average of coefficients θ = (θi)−p≤i≤q diagnostic_matrix returns a list with the
following ten criteria:

• b_c Constant bias (if bc = 0, θ preserve constant trends)

q∑
i=−p

θi − 1

• b_l Linear bias (if bc = bl = 0, θ preserve constant trends)

q∑
i=−p

iθi

• b_q Quadratic bias (if bc = bl = bq = 0, θ preserve quadratic trends)

q∑
i=−p

i2θi

8 filter

• F_g Fidelity criterium of Grun-Rehomme et al (2018)

• S_g Smoothness criterium of Grun-Rehomme et al (2018)

• T_g Timeliness criterium of Grun-Rehomme et al (2018)

• A_w Accuracy criterium of Wildi and McElroy (2019)

• S_w Smoothness criterium of Wildi and McElroy (2019)

• T_w Timeliness criterium of Wildi and McElroy (2019)

• R_w Residual criterium of Wildi and McElroy (2019)

References

Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray (2018). “Asymmetric Moving
Averages Minimizing Phase Shift”. In: Handbook on Seasonal Adjustment.

Wildi, Marc and McElroy, Tucker (2019). “The trilemma between accuracy, timeliness and smooth-
ness in real-time signal extraction”. In: International Journal of Forecasting 35.3, pp. 1072–1084.

filter Linear Filtering on a Time Series

Description

Applies linear filtering to a univariate time series or to each series separately of a multivariate time
series using either a moving average (symmetric or asymmetric) or a combination of symmetric
moving average at the center and asymmetric moving averages at the bounds.

Usage

filter(x, coefs, remove_missing = TRUE)

Arguments

x a univariate or multivariate time series.

coefs a matrix or a list that contains all the coefficients of the asymmetric and sym-
metric filters. (from the symmetric filter to the shortest). See details.

remove_missing if TRUE (default) leading and trailing NA are removed before filtering.

Details

The functions filter extends filter allowing to apply every kind of moving averages (symmetric
and asymmetric filters) or to apply aset multiple moving averages to deal with the boundaries.

Let xt be the input time series to filter.

filters_operations 9

• If coef is an object moving_average(), of length q, the result y is equal at time t to:

y[t] = x[t− lags] ∗ coef [1] + x[t− lags+ 1] ∗ coef [1] + ...+ x[t− lags+ q] ∗ coef [q]

. It extends the function filter that would add NA at the end of the time series.

• If coef is a matrix, list or finite_filters() object, at the center, the symmetric moving
average is used (first column/element of coefs). At the boundaries, the last moving average
of coefs is used to compute the filtered time series y[n] (no future point known), the second
to last to compute the filtered time series y[n− 1] (one future point known)...

Examples

x <- retailsa$DrinkingPlaces

lags <- 6
leads <- 2
fst_coef <- fst_filter(lags = lags, leads = leads, smoothness.weight = 0.3, timeliness.weight = 0.3)
lpp_coef <- lp_filter(horizon = lags, kernel = "Henderson", endpoints = "LC")

fst_ma <- filter(x, fst_coef)
lpp_ma <- filter(x, lpp_coef[,"q=2"])

plot(ts.union(x, fst_ma, lpp_ma), plot.type = "single", col = c("black","red","blue"))

trend <- filter(x, lpp_coef)
This is equivalent to:
trend <- localpolynomials(x, horizon = 6)

filters_operations Operations on Filters

Description

Manipulation of moving_average() or finite_filters() objects

Usage

S3 method for class 'moving_average'
sum(..., na.rm = FALSE)

S4 method for signature 'moving_average,numeric'
x[i]

S4 method for signature 'moving_average,logical'
x[i]

S4 replacement method for signature 'moving_average,ANY,missing,numeric'
x[i] <- value

10 filters_operations

S3 method for class 'moving_average'
cbind(..., zero_as_na = FALSE)

S3 method for class 'moving_average'
rbind(...)

S4 method for signature 'moving_average,moving_average'
e1 + e2

S4 method for signature 'moving_average,numeric'
e1 + e2

S4 method for signature 'numeric,moving_average'
e1 + e2

S4 method for signature 'moving_average,missing'
e1 + e2

S4 method for signature 'moving_average,missing'
e1 - e2

S4 method for signature 'moving_average,moving_average'
e1 - e2

S4 method for signature 'moving_average,numeric'
e1 - e2

S4 method for signature 'numeric,moving_average'
e1 - e2

S4 method for signature 'moving_average,moving_average'
e1 * e2

S4 method for signature 'moving_average,numeric'
e1 * e2

S4 method for signature 'numeric,moving_average'
e1 * e2

S4 method for signature 'ANY,moving_average'
e1 * e2

S4 method for signature 'moving_average,ANY'
e1 * e2

S4 method for signature 'moving_average,numeric'
e1 / e2

filters_operations 11

S4 method for signature 'moving_average,numeric'
e1 ^ e2

S4 method for signature 'finite_filters,moving_average'
e1 * e2

S4 method for signature 'moving_average,finite_filters'
e1 * e2

S4 method for signature 'finite_filters,numeric'
e1 * e2

S4 method for signature 'ANY,finite_filters'
e1 * e2

S4 method for signature 'finite_filters,ANY'
e1 * e2

S4 method for signature 'numeric,finite_filters'
e1 + e2

S4 method for signature 'finite_filters,moving_average'
e1 + e2

S4 method for signature 'moving_average,finite_filters'
e1 + e2

S4 method for signature 'finite_filters,missing'
e1 + e2

S4 method for signature 'finite_filters,missing'
e1 - e2

S4 method for signature 'finite_filters,moving_average'
e1 - e2

S4 method for signature 'moving_average,finite_filters'
e1 - e2

S4 method for signature 'finite_filters,numeric'
e1 - e2

S4 method for signature 'numeric,finite_filters'
e1 - e2

S4 method for signature 'finite_filters,numeric'
e1 / e2

12 finite_filters

S4 method for signature 'finite_filters,numeric'
e1 ^ e2

S4 method for signature 'finite_filters,finite_filters'
e1 * e2

S4 method for signature 'finite_filters,finite_filters'
e1 + e2

S4 method for signature 'finite_filters,finite_filters'
e1 - e2

S4 method for signature 'finite_filters,missing'
x[i, j, ..., drop = TRUE]

S4 method for signature 'finite_filters,ANY'
x[i, j, ..., drop = TRUE]

Arguments

..., drop, na.rm other parameters.

x, e1, e2 object

i, j, value indices specifying elements to extract or replace and the new value

zero_as_na boolean indicating if, when merging several moving averages (cbind) if trealing
and leading zeros added to have a matrix form should be replaced by NA.

finite_filters Manipulating Finite Filters

Description

Manipulating Finite Filters

Usage

finite_filters(
sfilter,
rfilters = NULL,
lfilters = NULL,
first_to_last = FALSE

)

is.finite_filters(x)

S4 method for signature 'finite_filters'
show(object)

fst 13

Arguments

sfilter the symmetric filter (moving_average() object) or a matrix or list with all
the coefficients.

rfilters the right filters (used on the last points).
lfilters the left filters (used on the first points).
first_to_last boolean indicating if the first element of rfilters is the first asymmetric filter

(when only one observation is missing) or the last one (real-time estimates).
x object to test the class.
object finite_filters object.

Examples

ff_lp <- lp_filter()
ff_simple_ma <- finite_filters(moving_average(c(1, 1, 1), lags = -1)/3,

rfilters = list(moving_average(c(1, 1), lags = -1)/2))
ff_lp
ff_simple_ma
ff_lp * ff_simple_ma

fst FST criteria

Description

Compute the Fidelity, Smoothness and Timeliness (FST) criteria

Usage

fst(weights, lags, passband = pi/6, ...)

Arguments

weights either a "moving_average" or a numeric vector containing weights.
lags Lags of the moving average (when weights is not a "moving_average").
passband Passband threshold for timeliness criterion.
... other unused arguments.

Value

The values of the 3 criteria, the gain and phase of the associated filter.

References

Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray (2018). “Asymmetric Moving
Averages Minimizing Phase Shift”. In: Handbook on Seasonal Adjustment, https://ec.europa.
eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001.

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001

14 fst_filter

Examples

filter <- lp_filter(horizon = 6, kernel = "Henderson", endpoints = "LC")
fst(filter[, "q=0"])
To compute the statistics on all filters:
fst(filter)

fst_filter Estimation of a filter using the Fidelity-Smoothness-Timeliness criteria

Description

Estimation of a filter using the Fidelity-Smoothness-Timeliness criteria

Usage

fst_filter(
lags = 6,
leads = 0,
pdegree = 2,
smoothness.weight = 1,
smoothness.degree = 3,
timeliness.weight = 0,
timeliness.passband = pi/6,
timeliness.antiphase = TRUE

)

Arguments

lags Lags of the filter (should be positive).

leads Leads of the filter (should be positive or 0).

pdegree Local polynomials preservation: max degree.
smoothness.weight

Weight for the smoothness criterion (in [0, 1]).
smoothness.degree

Degree of the smoothness criterion (3 for Henderson).
timeliness.weight

Weight for the Timeliness criterion (in [0, 1[). sweight+tweight should be in
[0, 1].

timeliness.passband

Passband for the timeliness criterion (in radians). The phase effect is computed
in [0, passband].

timeliness.antiphase

boolean indicating if the timeliness should be computed analytically (TRUE) or
numerically (FALSE).

fst_filter 15

Details

Moving average computed by a minimisation of a weighted mean of three criteria under polynomi-
als constraints. Let θ = (θ−p, . . . , θf)

′ be a moving average where p and f are two integers defined
by the parameter lags and leads. The three criteria are:

• Fidelity, Fg: it’s the variance reduction ratio.

Fg(θ) =

+f∑
k=−p

θ2k

• Smoothness, Sg: it measures the flexibility of the coefficient curve of a filter and the smooth-
ness of the trend.

Sg(θ) =
∑
j

(∇qθj)
2

The integer q is defined by parameter smoothness.degree. By default, the Henderson criteria
is used (smoothness.degree = 3).

• Timeliness, Tg :

Tg(θ) =

∫ ω2

0

f(ρθ(ω), φθ(ω))dω

with ρθ and φθ the gain and phase shift functions of θ, and f a penalty function defined
as f : (ρ, φ) 7→ ρ2 sin(φ)2 to have an analytically solvable criterium. ω2 is defined by the
parameter timeliness.passband and is it by default equal to 2π/12: for monthly time series,
we focus on the timeliness associated to cycles of 12 months or more.

The moving average is then computed solving the problem:{
min
θ

J(θ) = (1− β − γ)Fg(θ) + βSg(θ) + γTg(θ)

s.t. Cθ = a

Where Cθ = a represents linear constraints to have a moving average that preserve polynomials of
degree q (pdegree):

C =

1 · · · 1
−h · · · h

... · · ·
...

(−h)d · · · hd

 , a =

1
0
...
0

References

Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray (2018). “Asymmetric Moving
Averages Minimizing Phase Shift”. In: Handbook on Seasonal Adjustment, https://ec.europa.
eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001.

Examples

filter <- fst_filter(lags = 6, leads = 0)
filter

https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001

16 get_moving_average

get_kernel Get the coefficients of a kernel

Description

Function to get the coefficient associated to a kernel. Those coefficients are then used to compute
the different filters.

Usage

get_kernel(
kernel = c("Henderson", "Uniform", "Triangular", "Epanechnikov", "Parabolic",
"BiWeight", "TriWeight", "Tricube", "Trapezoidal", "Gaussian"),

horizon,
sd_gauss = 0.25

)

Arguments

kernel kernel uses.

horizon horizon (bandwidth) of the symmetric filter.

sd_gauss standard deviation for gaussian kernel. By default 0.25.

Value

tskernel object (see kernel).

Examples

get_kernel("Henderson", horizon = 3)

get_moving_average Get Moving Averages from ARIMA model

Description

Get Moving Averages from ARIMA model

Usage

get_moving_average(x, ...)

Arguments

x the object.

... unused parameters

get_properties_function 17

Examples

fit <- stats::arima(log10(AirPassengers), c(0, 1, 1),
seasonal = list(order = c(0, 1, 1), period = 12))
get_moving_average(fit)

get_properties_function

Get properties of filters

Description

Get properties of filters

Usage

get_properties_function(
x,
component = c("Symmetric Gain", "Symmetric Phase", "Symmetric transfer",
"Asymmetric Gain", "Asymmetric Phase", "Asymmetric transfer"),

...
)

Arguments

x a "moving_average" or "finite_filters" object.

component the component to extract.

... unused other arguments.

Examples

filter <- lp_filter(3, kernel = "Henderson")
sgain <- get_properties_function(filter, "Symmetric Gain")
plot(sgain, xlim= c(0, pi/12))

implicit_forecast Retrieve implicit forecasts corresponding to the asymmetric filters

Description

Function to retrieve the implicit forecasts corresponding to the asymmetric filters

Usage

implicit_forecast(x, coefs)

18 impute_last_obs

Arguments

x a univariate or multivariate time series.

coefs a matrix or a list that contains all the coefficients of the asymmetric and sym-
metric filters. (from the symmetric filter to the shortest). See details.

Details

Let h be the bandwidth of the symmetric filter, v−h, . . . , vh the coefficients of the symmetric filter
and wq

−h, . . . , w
q
h the coefficients of the asymmetric filter used to estimate the trend when q future

values are known (with the convention wq
q+1 = . . . = wq

h = 0). Let denote y−h, . . . , y0 the las h
available values of the input times series. Let also note y−h, . . . , y0 the observed series studied and
y∗1 , . . . y

∗
hthe implicit forecast induced by w0, . . . wh−1. This means that:

∀q,
0∑

i=−h

viyi +

h∑
i=1

viy
∗
i =

0∑
i=−h

wq
i yi +

h∑
i=1

wq
i y

∗
i

which is equivalent to

∀q,
h∑

i=1

(vi − wq
i)y

∗
i =

0∑
i=−h

(wq
i − vi)yi.

Note that this is solved numerically: the solution isn’t exact.

Examples

x <- retailsa$AllOtherGenMerchandiseStores
ql <- lp_filter(horizon = 6, kernel = "Henderson", endpoints = "QL")
lc <- lp_filter(horizon = 6, kernel = "Henderson", endpoints = "LC")
f_ql <- implicit_forecast(x, ql)
f_lc <- implicit_forecast(x, lc)

plot(window(x, start = 2007),
xlim = c(2007,2012))

lines(ts(c(tail(x,1), f_ql), frequency = frequency(x), start = end(x)),
col = "red", lty = 2)

lines(ts(c(tail(x,1), f_lc), frequency = frequency(x), start = end(x)),
col = "blue", lty = 2)

impute_last_obs Impute Incomplete Finite Filters

Description

Impute Incomplete Finite Filters

Usage

impute_last_obs(x, n, nperiod = 1, backward = TRUE, forward = TRUE)

localpolynomials 19

Arguments

x a finite_filters() object.

n integer specifying the number of imputed periods. By default all the missing
moving averages are imputed.

nperiod integer specifying how to imput missing date. nperiod = 1 means imputation
using last filtered data (1 period backward), nperiod = 12 with monthly data
means imputation using last year filtered data, etc.

backward, forward
boolean indicating if the imputation should be done backward (on left filters),
forward (on right filters).

Details

When combining finite filters and a moving average, the first and/or the last points cannot be com-
puted.

For example, using the M2X12 moving average, that is to say the symmetric moving average with
coefficients

θ =
1

24
B6 +

1

12
B5 + · · ·+ 1

12
B−5 +

1

24
B−6,

the first and last 6 points cannot be computed.

impute_last_obs() allows to impute the first/last points using the nperiod previous filtered data.
With nperiod = 1, the last filtered data is used for the imputation, with nperiod = 12 and monthly
data, the last year filtered data is used for the imputation, etc.

Examples

y <- window(retailsa$AllOtherGenMerchandiseStores, start = 2008)
M3 <- moving_average(rep(1/3, 3), lags = -1)
M3X3 <- M3 * M3
M2X12 <- (simple_ma(12, -6) + simple_ma(12, -5)) / 2
composite_ma <- M3X3 * M2X12
The last 6 points cannot be computed
composite_ma
composite_ma * y
they can be computed using the last filtered data
e.g. to impute the first 3 missing months with last period:
impute_last_obs(composite_ma, n = 3, nperiod = 1) * y
or using the filtered data of the same month in previous year
impute_last_obs(composite_ma, n = 6, nperiod = 12) * y

localpolynomials Apply Local Polynomials Filters

Description

Apply Local Polynomials Filters

20 localpolynomials

Usage

localpolynomials(
x,
horizon = 6,
degree = 3,
kernel = c("Henderson", "Uniform", "Biweight", "Trapezoidal", "Triweight", "Tricube",

"Gaussian", "Triangular", "Parabolic"),
endpoints = c("LC", "QL", "CQ", "CC", "DAF"),
ic = 4.5,
tweight = 0,
passband = pi/12

)

Arguments

x input time-series.

horizon horizon (bandwidth) of the symmetric filter.

degree degree of polynomial.

kernel kernel uses.

endpoints method for endpoints.

ic ic ratio.

tweight timeliness weight.

passband passband threshold.

Value

the target signal

References

Proietti, Tommaso and Alessandra Luati (2008). “Real time estimation in local polynomial regres-
sion, with application to trend-cycle analysis”.

See Also

lp_filter().

Examples

x <- retailsa$AllOtherGenMerchandiseStores
trend <- localpolynomials(x, horizon = 6)
plot(x)
lines(trend, col = "red")

lp_filter 21

lp_filter Local Polynomials Filters

Description

Local Polynomials Filters

Usage

lp_filter(
horizon = 6,
degree = 3,
kernel = c("Henderson", "Uniform", "Biweight", "Trapezoidal", "Triweight", "Tricube",

"Gaussian", "Triangular", "Parabolic"),
endpoints = c("LC", "QL", "CQ", "CC", "DAF", "CN"),
ic = 4.5,
tweight = 0,
passband = pi/12

)

Arguments

horizon horizon (bandwidth) of the symmetric filter.

degree degree of polynomial.

kernel kernel uses.

endpoints method for endpoints.

ic ic ratio.

tweight timeliness weight.

passband passband threshold.

Details

• "LC": Linear-Constant filter

• "QL": Quadratic-Linear filter

• "CQ": Cubic-Quadratic filter

• "CC": Constant-Constant filter

• "DAF": Direct Asymmetric filter

• "CN": Cut and Normalized Filter

Value

a finite_filters() object.

22 mmsre_filter

References

Proietti, Tommaso and Alessandra Luati (2008). “Real time estimation in local polynomial regres-
sion, with application to trend-cycle analysis”.

See Also

mmsre_filter() localpolynomials().

Examples

henderson_f <- lp_filter(horizon = 6, kernel = "Henderson")
plot_coef(henderson_f)

mmsre_filter Mean Square Revision Error (mmsre) filter

Description

Provides an asymmetric filter based on the given reference filter (usually symmetric) minimizing
the mean square revision error.

Usage

mmsre_filter(
ref_filter,
q,
U,
Z = NULL,
delta = NULL,
kernel = NULL,
tweight = 0,
passband = pi/12

)

Arguments

ref_filter The reference filter (a moving_average() object).

q The horizon of the asymmetric filter.

U Matrix of the constraints.

Z Matrix of the bias (can be NULL).

delta Coefficients of the linear model.

kernel The kernel used for weighting factors, by default, no weight is used. See lp_filter()
for the available kernels.

tweight timeliness weight.

passband passband threshold.

mmsre_filter 23

Details

The asymmetric filter v = (v−h, . . . , vq)
′ minimizes the mean square revision error (mmsre) rela-

tive to the reference filter θ = (θ−h, . . . , θh′)′. The series follows the model

y = Uγ +Zδ + ε, ε ∼ N (0, σ2K−1).

With K a set of weights (kernel), by default (kernel = NULL) no weight is used. The matrix U
represents the constraints of the symmetric filter (usually polynomials preservations), θ, imposed
to the asymmetric filter, v. Partitionning the matrix U =

(
U ′

p U ′
f

)′
with Up the first h + q + 1

rows and Uf the remaining rows, the constraints are U ′
pv = U ′θ.

The matrix Z represents the bias of the asymmetric filter: usually constraints imposed to the sym-
metric filter but not to the asymmetric filter.

References

Proietti, Tommaso and Alessandra Luati (2008). “Real time estimation in local polynomial regres-
sion, with application to trend-cycle analysis”.

See Also

lp_filter().

Examples

QL <- lp_filter(endpoints = "QL", ic = 3.5)
LC <- lp_filter(endpoints = "LC", ic = 3.5)
DAF <- lp_filter(endpoints = "DAF")
h6 <- QL[, "q=6"]
To reproduce DAF filter
mmsre_filter(

ref_filter = h6, q = 0,
U = polynomial_matrix(l = - 6, d0 = 0, d1 = 3),
kernel = "Henderson"

)
DAF[, "q=0"]
To reproduce QL filter
mmsre_filter(

ref_filter = h6, q = 1,
delta = 2 / (sqrt(pi) * 3.5),
U = polynomial_matrix(l = -6, d0 = 0, d1 = 1),
Z = polynomial_matrix(l = -6, d0 = 2, d1 = 2)

)
QL[, "q=1"]

Or using the Uniform kernel
mmsre_filter(

ref_filter = h6, q = 2,
we multiply by the square root of the inverse of weights (1/13)
to get the same result as the QL filter
delta = 2 / (sqrt(pi) * 3.5) * (sqrt(13)),
U = polynomial_matrix(l = -6, d0 = 0, d1 = 0),

24 moving_average

Z = polynomial_matrix(l = -6, d0 = 1, d1 = 1),
kernel = "Uniform"

)
LC[, "q=2"]

moving_average Manipulation of moving averages

Description

Manipulation of moving averages

Usage

moving_average(
x,
lags = -length(x),
trailing_zero = FALSE,
leading_zero = FALSE

)

is.moving_average(x)

is_symmetric(x)

upper_bound(x)

lower_bound(x)

mirror(x)

S3 method for class 'moving_average'
rev(x)

S3 method for class 'moving_average'
length(x)

to_seasonal(x, s)

S4 method for signature 'moving_average'
show(object)

Arguments

x vector of coefficients.

lags integer indicating the number of lags of the moving average.

moving_average 25

trailing_zero, leading_zero
boolean indicating wheter to remove leading/trailing zero and NA.

s seasonal period for the to_seasonal() function.
object moving_average object.

Details

A moving average is defined by a set of coefficient θ = (θ−p, . . . , θf)
′ such all time series Xt are

transformed as:

Mθ(Xt) =

+f∑
k=−p

θkXt+k =

 +f∑
k=−p

θkB
−k

Xt

The integer p is defined by the parameter lags.

The function to_seasonal() transforms the moving average θ to:

Mθ′(Xt) =

+f∑
k=−p

θkXt+ks =

 +f∑
k=−p

θkB
−ks

Xt

Examples

y <- retailsa$AllOtherGenMerchandiseStores
e1 <- moving_average(rep(1,12), lags = -6)
e1 <- e1/sum(e1)
e2 <- moving_average(rep(1/12, 12), lags = -5)
M2X12 <- (e1 + e2)/2
coef(M2X12)
M3 <- moving_average(rep(1/3, 3), lags = -1)
M3X3 <- M3 * M3
M3X3 moving average applied to each month
M3X3
M3X3_seasonal <- to_seasonal(M3X3, 12)
M3X3_seasonal moving average applied to the global series
M3X3_seasonal

def.par <- par(no.readonly = TRUE)
par(mai = c(0.5, 0.8, 0.3, 0))
layout(matrix(c(1,2), nrow = 1))
plot_gain(M3X3, main = "M3X3 applied to each month")
plot_gain(M3X3_seasonal, main = "M3X3 applied to the global series")
par(def.par)

To apply the moving average
t <- y * M2X12
Or use the filter() function:
t <- filter(y, M2X12)
si <- y - t
s <- si * M3X3_seasonal
or equivalently:
s_mm <- M3X3_seasonal * (1 - M2X12)
s <- y * s_mm
plot(s)

26 mse

mse Accuracy/smoothness/timeliness criteria through spectral decomposi-
tion

Description

Accuracy/smoothness/timeliness criteria through spectral decomposition

Usage

mse(aweights, sweights, density = c("uniform", "rw"), passband = pi/6, ...)

Arguments

aweights moving_average object or weights of the asymmetric filter (from -n to m).

sweights moving_average object or weights of the symmetric filter (from 0 to n or -n to
n).

density hypothesis on the spectral density: "uniform" (= white woise, the default) or
"rw" (= random walk).

passband passband threshold.

... other unused arguments.

Value

The criteria

References

Wildi, Marc and McElroy, Tucker (2019). “The trilemma between accuracy, timeliness and smooth-
ness in real-time signal extraction”. In: International Journal of Forecasting 35.3, pp. 1072–1084.

Examples

filter <- lp_filter(horizon = 6, kernel = "Henderson", endpoints = "LC")
sweights <- filter[, "q=6"]
aweights <- filter[, "q=0"]
mse(aweights, sweights)
Or to compute directly the criteria on all asymmetric filters:
mse(filter)

plot_filters 27

plot_filters Plots filters properties

Description

Functions to plot the coefficients, the gain and the phase functions.

Usage

plot_coef(x, nxlab = 7, add = FALSE, ..., xlab = "", ylab = "coefficient")

Default S3 method:
plot_coef(

x,
nxlab = 7,
add = FALSE,
zero_as_na = TRUE,
q = 0,
legend = FALSE,
legend.pos = "topright",
...,
xlab = "",
ylab = "coefficient"

)

S3 method for class 'moving_average'
plot_coef(x, nxlab = 7, add = FALSE, ..., xlab = "", ylab = "coefficient")

S3 method for class 'finite_filters'
plot_coef(
x,
nxlab = 7,
add = FALSE,
zero_as_na = TRUE,
q = 0,
legend = length(q) > 1,
legend.pos = "topright",
...,
xlab = "",
ylab = "coefficient"

)

plot_gain(
x,
nxlab = 7,
add = FALSE,
xlim = c(0, pi),

28 plot_filters

...,
xlab = "",
ylab = "gain"

)

S3 method for class 'moving_average'
plot_gain(
x,
nxlab = 7,
add = FALSE,
xlim = c(0, pi),
...,
xlab = "",
ylab = "gain"

)

S3 method for class 'finite_filters'
plot_gain(
x,
nxlab = 7,
add = FALSE,
xlim = c(0, pi),
q = 0,
legend = length(q) > 1,
legend.pos = "topright",
n = 101,
...,
xlab = "",
ylab = "gain"

)

plot_phase(
x,
nxlab = 7,
add = FALSE,
xlim = c(0, pi),
normalized = FALSE,
...,
xlab = "",
ylab = "phase"

)

S3 method for class 'moving_average'
plot_phase(
x,
nxlab = 7,
add = FALSE,
xlim = c(0, pi),

plot_filters 29

normalized = FALSE,
...,
xlab = "",
ylab = "phase"

)

S3 method for class 'finite_filters'
plot_phase(
x,
nxlab = 7,
add = FALSE,
xlim = c(0, pi),
normalized = FALSE,
q = 0,
legend = length(q) > 1,
legend.pos = "topright",
n = 101,
...,
xlab = "",
ylab = "phase"

)

Arguments

x coefficients, gain or phase.

nxlab number of xlab.

add boolean indicating if the new plot is added to the previous one.

... other arguments to matplot.

xlab, ylab labels of axis.

zero_as_na boolean indicating if the trailing zero of the coefficients should be plotted (FALSE)
or removed (TRUE).

q q.

legend boolean indicating if the legend is printed.

legend.pos position of the legend.

xlim vector containing x limits.

n number of points used to plot the functions.

normalized boolean indicatif if the phase function is normalized by the frequency.

Examples

filter <- lp_filter(6, endpoints = "DAF", kernel = "Henderson")
plot_coef(filter, q = c(0,3), legend = TRUE)
plot_gain(filter, q = c(0,3), legend = TRUE)
plot_phase(filter, q = c(0,3), legend = TRUE)

30 polynomial_matrix

polynomial_matrix Create polynomial matrix

Description

Create polynomial matrix used in local polynomial regression (see details).

Usage

polynomial_matrix(l, u = abs(l), d0 = 0, d1 = 3)

Arguments

l, u lower bound (usually negative) and upper bound (usually positive) of the poly-
nomial matrix.

d0, d1 lower and polynomial degree of the polynomial matrix.

Details

polynomial_matrix() computes the following matrix
(l)d0 (l)d0+1 · · · (l)d1

(l + 1)d0 (l + 1)d0+1 · · · (l + 1)d1

...
... · · ·

...
(p)d0 (p)d0+1 · · · (p)d1

Examples

For example to reproduce DAF filters
daf <- lp_filter(horizon = 6, endpoints = "DAF")
q <- 0
X <- polynomial_matrix(l = -6, u = q, d0 = 0, d1 = 3)
K <- diag(sapply(-6:q, function(i) get_kernel(horizon = 6)[i]))
e_1 <- c(1, 0, 0, 0)
q0 <- K %*% X %*% solve(t(X) %*% K %*% X, e_1)
q0
daf[, "q=0"]

retailsa 31

retailsa Seasonally Adjusted Retail Sales

Description

A dataset containing monthly seasonally adjusted retailed sales

Usage

retailsa

Format

A list of ts objects from january 1992 to december 2010.

rkhs_filter Reproducing Kernel Hilbert Space (RKHS) Filters

Description

Estimation of a filter using Reproducing Kernel Hilbert Space (RKHS)

Usage

rkhs_filter(
horizon = 6,
degree = 2,
kernel = c("BiWeight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
"TriWeight"),

asymmetricCriterion = c("Timeliness", "FrequencyResponse", "Accuracy", "Smoothness",
"Undefined"),

density = c("uniform", "rw"),
passband = 2 * pi/12,
optimalbw = TRUE,
optimal.minBandwidth = horizon,
optimal.maxBandwidth = 3 * horizon,
bandwidth = horizon + 1

)

Arguments

horizon horizon (bandwidth) of the symmetric filter.

degree degree of polynomial.

kernel kernel uses.

32 rkhs_kernel

asymmetricCriterion

the criteria used to compute the optimal bandwidth. If "Undefined", m + 1 is
used.

density hypothesis on the spectral density: "uniform" (= white woise, the default) or
"rw" (= random walk).

passband passband threshold.

optimalbw boolean indicating if the bandwith should be choosen by optimisation (between
optimal.minBandwidth and optimal.minBandwidth using the criteria asymmetricCriterion).
If optimalbw = FALSE then the bandwith specified in bandwidth will be used.

optimal.minBandwidth, optimal.maxBandwidth
the range used for the optimal bandwith selection.

bandwidth the bandwidth to use if optimalbw = FALSE.

Value

a finite_filters() object.

References

Dagum, Estela Bee and Silvia Bianconcini (2008). “The Henderson Smoother in Reproducing
Kernel Hilbert Space”. In: Journal of Business & Economic Statistics 26, pp. 536–545. URL:
https://ideas.repec.org/a/bes/jnlbes/v26y2008p536-545.html.

Examples

rkhs <- rkhs_filter(horizon = 6, asymmetricCriterion = "Timeliness")
plot_coef(rkhs)

rkhs_kernel Get RKHS kernel function

Description

Get RKHS kernel function

Usage

rkhs_kernel(
kernel = c("Biweight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
"Triweight"),

degree = 2,
horizon = 6

)

https://ideas.repec.org/a/bes/jnlbes/v26y2008p536-545.html

rkhs_optimal_bw 33

Arguments

kernel kernel uses.
degree degree of polynomial.
horizon horizon (bandwidth) of the symmetric filter.

rkhs_optimal_bw Optimal Bandwith of Reproducing Kernel Hilbert Space (RKHS) Fil-
ters

Description

Function to export the optimal bandwidths used in Reproducing Kernel Hilbert Space (RKHS)
filters

Usage

rkhs_optimal_bw(
horizon = 6,
degree = 2,
kernel = c("Biweight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
"Triweight"),

asymmetricCriterion = c("Timeliness", "FrequencyResponse", "Accuracy", "Smoothness"),
density = c("uniform", "rw"),
passband = 2 * pi/12,
optimal.minBandwidth = horizon,
optimal.maxBandwidth = 3 * horizon

)

Arguments

horizon horizon (bandwidth) of the symmetric filter.
degree degree of polynomial.
kernel kernel uses.
asymmetricCriterion

the criteria used to compute the optimal bandwidth. If "Undefined", m + 1 is
used.

density hypothesis on the spectral density: "uniform" (= white woise, the default) or
"rw" (= random walk).

passband passband threshold.
optimal.minBandwidth, optimal.maxBandwidth

the range used for the optimal bandwith selection.

Examples

rkhs_optimal_bw(asymmetricCriterion = "Timeliness")
rkhs_optimal_bw(asymmetricCriterion = "Timeliness", optimal.minBandwidth = 6.2)

34 rkhs_optimization_fun

rkhs_optimization_fun Optimization Function of Reproducing Kernel Hilbert Space (RKHS)
Filters

Description

Export function used to compute the optimal bandwidth of Reproducing Kernel Hilbert Space
(RKHS) filters

Usage

rkhs_optimization_fun(
horizon = 6,
leads = 0,
degree = 2,
kernel = c("Biweight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
"Triweight"),

asymmetricCriterion = c("Timeliness", "FrequencyResponse", "Accuracy", "Smoothness"),
density = c("uniform", "rw"),
passband = 2 * pi/12

)

Arguments

horizon horizon (bandwidth) of the symmetric filter.

leads Leads of the filter (should be positive or 0).

degree degree of polynomial.

kernel kernel uses.
asymmetricCriterion

the criteria used to compute the optimal bandwidth. If "Undefined", m + 1 is
used.

density hypothesis on the spectral density: "uniform" (= white woise, the default) or
"rw" (= random walk).

passband passband threshold.

Examples

plot(rkhs_optimization_fun(horizon = 6, leads = 0,degree = 3, asymmetricCriterion = "Timeliness"),
5.5, 6*3, ylab = "Timeliness",
main = "6X0 filter")

plot(rkhs_optimization_fun(horizon = 6, leads = 1,degree = 3, asymmetricCriterion = "Timeliness"),
5.5, 6*3, ylab = "Timeliness",
main = "6X1 filter")

plot(rkhs_optimization_fun(horizon = 6, leads = 2,degree = 3, asymmetricCriterion = "Timeliness"),
5.5, 6*3, ylab = "Timeliness",
main = "6X2 filter")

simple_ma 35

plot(rkhs_optimization_fun(horizon = 6, leads = 3,degree = 3, asymmetricCriterion = "Timeliness"),
5.5, 6*3, ylab = "Timeliness",
main = "6X3 filter")

plot(rkhs_optimization_fun(horizon = 6, leads = 4,degree = 3, asymmetricCriterion = "Timeliness"),
5.5, 6*3, ylab = "Timeliness",
main = "6X4 filter")

plot(rkhs_optimization_fun(horizon = 6, leads = 5,degree = 3, asymmetricCriterion = "Timeliness"),
5.5, 6*3, ylab = "Timeliness",
main = "6X5 filter")

simple_ma Simple Moving Average

Description

A simple moving average is a moving average whose coefficients are all equal and whose sum is 1

Usage

simple_ma(order, lags = -trunc((order - 1)/2))

Arguments

order number of terms of the moving_average

lags integer indicating the number of lags of the moving average.

Examples

The M2X12 moving average is computed as
(simple_ma(12, -6) + simple_ma(12, -5)) / 2
The M3X3 moving average is computed as
simple_ma(3, -1) ^ 2
The M3X5 moving average is computed as
simple_ma(3, -1) * simple_ma(5, -2)

var_estimator Variance Estimator

Description

Variance Estimator

Usage

var_estimator(x, coef, ...)

36 var_estimator

Arguments

x input time series.

coef vector of coefficients or a moving-average (moving_average()).

... other arguments passed to the function moving_average() to convert coef to a
"moving_average" object.

Details

Let (θi)−p≤i≤q be a moving average of length p + q + 1 used to filter a time series (yi)1≤i≤n. It
is equivalent to a local regression and the associated error variance σ2 can be estimated using the
normalized residual sum of squares, which can be simplified as:

σ̂2 =
1

n− (p+ q)

n−q∑
t=p+1

(yt − µ̂t)
2

1− 2w2
0 +

∑q
i=−p w

2
i

References

Loader, Clive. 1999. Local regression and likelihood. New York: Springer-Verlag.

Index

∗ datasets
retailsa, 31

*,ANY,finite_filters-method
(filters_operations), 9

*,ANY,moving_average-method
(filters_operations), 9

*,finite_filters,ANY-method
(filters_operations), 9

*,finite_filters,finite_filters-method
(filters_operations), 9

*,finite_filters,moving_average-method
(filters_operations), 9

*,finite_filters,numeric-method
(filters_operations), 9

*,moving_average,ANY-method
(filters_operations), 9

*,moving_average,finite_filters-method
(filters_operations), 9

*,moving_average,moving_average-method
(filters_operations), 9

*,moving_average,numeric-method
(filters_operations), 9

*,numeric,moving_average-method
(filters_operations), 9

+,finite_filters,finite_filters-method
(filters_operations), 9

+,finite_filters,missing-method
(filters_operations), 9

+,finite_filters,moving_average-method
(filters_operations), 9

+,moving_average,finite_filters-method
(filters_operations), 9

+,moving_average,missing-method
(filters_operations), 9

+,moving_average,moving_average-method
(filters_operations), 9

+,moving_average,numeric-method
(filters_operations), 9

+,numeric,finite_filters-method

(filters_operations), 9
+,numeric,moving_average-method

(filters_operations), 9
-,finite_filters,finite_filters-method

(filters_operations), 9
-,finite_filters,missing-method

(filters_operations), 9
-,finite_filters,moving_average-method

(filters_operations), 9
-,finite_filters,numeric-method

(filters_operations), 9
-,moving_average,finite_filters-method

(filters_operations), 9
-,moving_average,missing-method

(filters_operations), 9
-,moving_average,moving_average-method

(filters_operations), 9
-,moving_average,numeric-method

(filters_operations), 9
-,numeric,finite_filters-method

(filters_operations), 9
-,numeric,moving_average-method

(filters_operations), 9
/,finite_filters,numeric-method

(filters_operations), 9
/,moving_average,numeric-method

(filters_operations), 9
[,finite_filters,ANY-method

(filters_operations), 9
[,finite_filters,missing-method

(filters_operations), 9
[,moving_average,logical-method

(filters_operations), 9
[,moving_average,numeric-method

(filters_operations), 9
[<-,moving_average,ANY,missing,numeric-method

(filters_operations), 9
^,finite_filters,numeric-method

(filters_operations), 9

37

38 INDEX

^,moving_average,numeric-method
(filters_operations), 9

cbind.moving_average
(filters_operations), 9

confint_filter, 2
cp (diagnostics-fit), 5
cross_validation

(deprecated-rjd3filters), 4
cv (diagnostics-fit), 5
cve (diagnostics-fit), 5

deprecated-rjd3filters, 4
dfa_filter, 4
diagnostic_matrix, 7
diagnostics-fit, 5

filter, 8, 8, 9
filters_operations, 9
finite_filters, 12
finite_filters(), 3, 9, 19, 21, 32
fst, 13
fst_filter, 14

get_kernel, 16
get_moving_average, 16
get_properties_function, 17

implicit_forecast, 17
impute_last_obs, 18
is.finite_filters (finite_filters), 12
is.moving_average (moving_average), 24
is_symmetric (moving_average), 24

kernel, 16

length.moving_average (moving_average),
24

localpolynomials, 19
localpolynomials(), 22
loocve (diagnostics-fit), 5
lower_bound (moving_average), 24
lp_filter, 21
lp_filter(), 20, 22, 23

mirror (moving_average), 24
mmsre_filter, 22
mmsre_filter(), 22
moving_average, 24
moving_average(), 3, 4, 6, 9, 13, 22, 36

mse, 7, 26

plot_coef (plot_filters), 27
plot_filters, 27
plot_gain (plot_filters), 27
plot_phase (plot_filters), 27
polynomial_matrix, 30

rbind.moving_average
(filters_operations), 9

retailsa, 31
rev.moving_average (moving_average), 24
rkhs_filter, 31
rkhs_kernel, 32
rkhs_optimal_bw, 33
rkhs_optimization_fun, 34
rt (diagnostics-fit), 5

show,finite_filters-method
(finite_filters), 12

show,moving_average-method
(moving_average), 24

simple_ma, 35
sum.moving_average

(filters_operations), 9

to_seasonal (moving_average), 24

upper_bound (moving_average), 24

var_estimator, 35
var_estimator(), 3, 6

	confint_filter
	deprecated-rjd3filters
	dfa_filter
	diagnostics-fit
	diagnostic_matrix
	filter
	filters_operations
	finite_filters
	fst
	fst_filter
	get_kernel
	get_moving_average
	get_properties_function
	implicit_forecast
	impute_last_obs
	localpolynomials
	lp_filter
	mmsre_filter
	moving_average
	mse
	plot_filters
	polynomial_matrix
	retailsa
	rkhs_filter
	rkhs_kernel
	rkhs_optimal_bw
	rkhs_optimization_fun
	simple_ma
	var_estimator
	Index

