The package allows several equivalent definitions of a basic structural model. We present below some of them.
To compare the results (more precisely the likelihood) of the different approaches, it is important to compute the marginal likelihood.
# create the model
bsm<-model()
# create the components and add them to the model
add(bsm, locallineartrend("ll"))
add(bsm, seasonal("s", 12, type="HarrisonStevens"))
add(bsm, noise("n"))
rslt<-estimate(bsm, log(s), marginal=TRUE)
# create the model
bsm<-model()
# create the components and add them to the model
add(bsm, locallineartrend("ll"))
add(bsm, seasonal("s", 12, type="HarrisonStevens"))
# create the equation (fix the variance to 1)
eq<-equation("eq", 1,TRUE)
add_equation(eq, "ll")
add_equation(eq, "s")
add(bsm, eq)
rslt<-estimate(bsm, log(s), marginal=TRUE)
# create the model
bsm<-model()
# create the components, with fixed variances, and add them to the model
add(bsm, locallineartrend("ll",
levelVariance = 1, fixedLevelVariance = TRUE))
add(bsm, seasonal("s", 12, type="HarrisonStevens",
variance = 1, fixed = TRUE))
add(bsm, noise("n", 1, fixed=TRUE))
# create the equation (fix the variance to 1)
eq<-equation("eq", 0, TRUE)
add_equation(eq, "ll", .01, FALSE)
add_equation(eq, "s", .01, FALSE)
add_equation(eq, "n")
add(bsm, eq)
rslt<-estimate(bsm, log(s), marginal=TRUE)
p<-result(rslt, "parameters")
To be noted:
# create the model
bsm<-model()
# create the components and add them to the model
add(bsm, locallevel("l", initial = 0))
add(bsm, locallineartrend("lt", levelVariance = 0,
fixedLevelVariance = TRUE))
add(bsm, seasonal("s", 12, type="HarrisonStevens"))
add(bsm, noise("n", 1, fixed=TRUE))
# create the equation (fix the variance to 1)
rslt<-estimate(bsm, log(s), marginal=TRUE)